- primitive cohomology
- мат.примитивная когомология
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Steenrod algebra — In algebraic topology, a branch of mathematics, the Steenrod algebra is a structure occurring in the theory of cohomology operations. It is an object of great importance, most especially to homotopy theorists. More precisely, for a given prime… … Wikipedia
Cyclotomic character — In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it … Wikipedia
Kazhdan–Lusztig polynomial — In representation theory, a Kazhdan–Lusztig polynomial P y,w ( q ) is a member of a family of integral polynomials introduced in work of David Kazhdan and George Lusztig Harv|Kazhdan|Lusztig|1979. They are indexed by pairs of elements y , w of a… … Wikipedia
Standard conjectures on algebraic cycles — In mathematics, the standard conjectures about algebraic cycles is a package of several conjectures describing the relationship of algebraic cycles and Weil cohomology theories. The original application envisaged by Grothendieck was to prove that … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Closed and exact differential forms — In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form that is the exterior derivative of another … Wikipedia
Group action — This article is about the mathematical concept. For the sociology term, see group action (sociology). Given an equilateral triangle, the counterclockwise rotation by 120° around the center of the triangle acts on the set of vertices of the… … Wikipedia
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Infinite descent — In mathematics, a proof by infinite descent is a particular kind of proof by contradiction which relies on the fact that the natural numbers are well ordered. One typical application is to show that a given equation has no solutions. Assuming a… … Wikipedia